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HYPOTHESIS

Surface water isoscapes should yield predictions within the
specified margin of error for strontium and oxygen isotopes.
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METHODS

Isotope Analysis
• Water filtered, Sr separated through ion 

chromatography
• Archaeological enamel mechanically cleaned, drilled, 

and chemically prepared according to standard 
methods (e.g. Knudson et al. 2017; Tung et al. 2016)

• Elemental concentrations and 87Sr/86Sr ratios 
analyzed Keck Lab (Knudson et al., 2017; Knudson et 
al., 2016; Marsteller et al., 2017)

• Water analyzed for δ18O at BSIRL (Tung et al., 2016)
• δ18O‰dw SMOW = (((18O /(16Osample)/ (18O /(16Ostandard)) –

1) x 1000) (Coplen, 1994; Craig, 1961)
Geostatistical Models and Validation
• Universal kriging with first order trend removal used 

due to detection of east-west trend (to satisfy 
stationarity assumption); spherical model type

• Dual model was co-kriged
• 20% removed from the training datasets for validation 
• Interval approach used to compare enamel 

measurements with single and dual isoscape 
predictions within error (see Laffoon et al., 2017)

• For Sr, acceptable error = measurement ± 2 SD
• For O, acceptable error = measurement ± 3.1 ‰, the 

“minimum meaningful difference” for δ18O in human 
enamel (Pestle et al. 2014)

• Standard model diagnostics reported (Oliver and 
Webster 2014)

• Validation from published and unpublished enamel

RESULTS: OXYGEN ISOSCAPE RESULTS: DUAL ISOTOPE MODEL
• Co-kriged model: Same parameters as single models
• Cross-validation results are the same as reported for 

each individual isotope model
• Interval approach validation: 30 teeth from Uraca 

(Majes Valley, Peru) with paired 87Sr/86Sr and δ18O 
data 87Sr/86Sr: 27/30 (90.0%) of predictions fell within 
the measured ± 2 SD (SD = 0.002, n = 30)

• δ18O: 30/30 (100.0%) of predictions fell within the 
measured  ± 3.1 ‰

• 27/30 (90.0%) of predictions at this site location met 
the criteria for both isotopes

DISCUSSION & CONCLUSION
• Excellent fit at Uraca may be explained by mixed 

water at intermediate elevations (500 = 1000 masl);  
these models may perform more poorly at higher 
elevations where water  sources are more 
heterogeneous

• Future validations should attempt to validate only with 
most probable locals

• Oxygen isotopes continue to perform worse than 
strontium

• Dual-isotope model more effective at constraining 
likely provenience than single-isotope models

• Ongoing work: Collecting baseline samples from 
regions poorly represented in database, generating 
process-based models, and generating probability 
maps of likely origins

RESULTS: STRONTIUM ISOSCAPE

• Surface water 
87Sr/86Sr values 
range: 0.70489 to 
0.72267 (mean = 
0.70766, sd = 
0.0018, N = 124)

• Normally distributed 
(Ryan-Joiner p-value 
< 0.010)

• Best fit 87Sr/86Sr
model (Fig. 4, Fig. 5)
diagnostics: Mean < 
0.001; Root-mean-
square = 0.001; 
Mean standardized = 
0.013; Root-mean-
square standardized 
= 0.63; Average 
standard error = 
0.003

Isotopic Principles
• 87Sr/86Sr varies with bedrock age and composition 

(Bentley, 2006); Sr replaces Ca in enamel 
hydroxyapatite, so 87Sr/86Srenamel reflects geological 
signature of childhood diet (and by proxy, place(s) of 
residence)

• Oxygen isotopes vary based on altitude, latitude, 
temperature, and distance from the coast (Bowen et 
al., 2005; Fry, 2006); δ18O values reflect 
geographically-specific drinking water consumed 
during tissue formation (Bowen et al., 2009; Ehleringer
et al., 2008) 

• Given local food and water consumption, enamel 
values beyond local baseline likely grew up outside 
the local isotopic catchment (Knudson, 2009; Knudson 
et al., 2016)

• Modeling “local” values from baseline materials is 
essential for geolocating individuals to likely 
geographic origins

• Isoscapes, geospatially explicit predictive models of 
isotope values, are used to geolocate skeletons to 
likely origins for O (Bowen et al., 2009; Chesson et al., 
2018; Ehleringer et al., 2008; Ehleringer et al., 2010) 
and Sr systems (Laffoon et al., 2018; Laffoon et al., 
2012); Prediction accuracy is improved by dual-
isotope models (Laffoon et al. 2017)

Forensic Context
• Long term aim: Create a multi-isotope isoscape of the 

Peruvian Andes to aid in identifying individuals killed in 
the Shining Path conflict in Peru in the 1980s-1990s

• ~69,000 individuals died in the conflict
• A few thousand bodies have been exhumed (Fig. 1)

LEARNING OVERVIEW

Figure 1. Exhumations in Ayacucho, Peru 

Figure 2. Surface water collection sites (N = 124 for Sr, N = 236 for O). 

• Validation of 80% 
training model with 
20% test set (water, n 
= 25) R2 = 0.196

• Cross-validation with 
archaeological set 
(20% of published 
Andean 87Sr/86Sr 
values from Scaffidi 
and Knudson ND, n = 
202), R2 = 0.229

• Interval approach 
validation: 95.0% of 
archaeological 
samples correctly 
classified within ± 2 
SD (SD = 0.002, mean 
= 0.7076, n = 205)

Figure 5. Prediction standard error for water Sr isoscape.

Figure 4. Water Sr isoscape.

• Surface water 
δ18Odw SMOW values 
ranged from -19.6‰ 
to -3.5‰ (mean = -
11.34, sd = 4.18, N 
= 575)

• Normally distributed 
(Ryan-Joiner p-
value <0.010)

• Best fit δ18O model 
(Fig. 6, Fig. 7) (See 
also Zimmer-
Dauphinee et al. 
2020) diagnostics: 
Mean = -0.002;   
Root-mean-square = 
1.168; Mean 
standardized = 
0.003; Root-mean-
square standardized 
= 1.054; Average 
standard error = 
1.270 Figure 6. Water δ18Odw SMOW isoscape.

• Validation of 80% 
training model with 
20% test set (water, 
n =115) R2 = 0.973

• Cross-validation 
with archaeological 
set (20% of 
published Andean 
δ18O values 
compiled by Scaffidi 
and Tung, n = 115), 
R2 = 0.027

• Interval approach 
validation: 92.9% of 
archaeological 
samples correctly 
classified within ±
3.1 (Pestle et al. 
2014) (SD = 2.48, 
mean = -13.86, n = 
115)Figure 7. Prediction standard error for water 

δ18Odw SMOW isoscape.
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