

Abstract

Polymer coated bullets have gained popularity in recent years. To determine the composition of two polymer coated bullets [American Eagle Syntech (red polymer) and Syntech Defense 9 mm Luger (blue polymer)], the solubility, melting point and molecular vibrations of the polymers were examined. Our results indicate that the blue and red polymers studied had different solubilities, melting points and molecular vibrations. Infrared spectroscopy revealed that the blue polymer had similar functional groups to dimethyl iso phthalate while the red polymer had similar functional groups to poly(ethylene glycol terephthalate). These results confirm that both polymers have different compositions as evident by the differences in solubility, melting point and their infrared signatures. The next step would be to study various targets shot with polymer coated bullets for the presence of polymer residue. This can be helpful to link evidence from a crime scene to known polymer coated bullets.

Introduction & Aims

new line of ammunition released by Federal Ammunition Company employs a synthetic jacket which encases the lead core in a polymer. The synthetic jacket reduces the wear on the bore of the gun as well as prevents metal-on-metal contact between the bullet and the bore. Additionally, polymer coated bullets reduce the friction inside the barrel of the gun.

Figure 1. Examples of synthetic jacket used for polymer coated bullets

Hypothesis: Methods such as Infrared spectroscopy and Raman spectroscopy can be used to determine the composition of the polymer coatings. These two methods will provide insight into both the IR active and Raman active bonds present in the polymer coatings.

Aims:

Determine the composition of the polymer coatings as it can lead to knowing if the polymer contains harmful substances, such as phthalate plasticizers.

Analysis of Polymer Coated Bullets Using Spectroscopic Methods

Liana Albano, Peter Diaczuk, Ph.D. John Jay College of Criminal Justice - CUNY

Research Approach

Results

Figure 4. IR spectrum of the red polymer overlaid with top library match

Blue Polymer	
Soluble Insoluble	
Toluene Ethanol	
Phenol Ethyl Acetate	
Methylene Chloride Ethylene Glycol	
Acetonitrile Glycerine	
Amyl Acetate 1-Butanol	
Petroleum Ether Dibutyl Phthalate	
1,1,1-Trichloroethane Methanol	
Acetone Cyclohexane	
Buffer pH 8	
Buffer pH 6	
n-Heptane	
Olive Oil	
Mineral Oil Light	
n-Hexane	

Figure 3. Solubility data for the blue polymer

Figure 5. IR spectrum of the blue polymer overlaid with top library match

Conclusions & Next Steps

as the steel plate.

Figure 6. Polymer coated bullet perforating a steel plate and sending traces of the polymer in all directions

- https://link-gale-29 Dec. 2019.

Support for student stipends, supplies, and/or equipment used in this research was supplied by the Program for Research Initiatives in Science and Math (PRISM) at John Jay College. PRISM is funded by the Title V program within the U.S. Department of Education; the PAESMEM program through the National Science Foundation; and New York State's Graduate Research and Technology Initiative and NYS Education Department CSTEP program.

The authors would like to thank Dr. Reffner for allowing us to use his instrumentation to further our research.

IR spectroscopy revealed that the blue polymer has similar functional groups to dimethyl iso phthalate while the red polymer has similar functional groups to poly(ethylene glycol terephthalate).

Next, Raman spectroscopy will be used to either further identify the polymer coatings or reinforce the IR results.

Since these types of polymer coated bullets do not retain individualizing minutiae like standard bullets do, the next steps in our research would be to determine if traces of the polymer can be detected on impact marks, such

References

Hutchcroft, Joel J. "Federal Syntech Ammunition." Shooting Times, Feb. 2017, p. 58. Gale General OneFile, com.ez.lib.jjay.cuny.edu/apps/doc/A473692095/ITOF?u=cuny_johnjay&sid=ITOF&xid=e5ae68f3. Accessed

Miller, Brad. "Coated Bullets: The Future of Lead Bullets for Handloaders?" Shooting Sports, 7 Mar. 2017, https://www.ssusa.org/articles/2017/3/7/coated-bullets-the-future-of-lead-bullets-for-handloaders/.

Miller, Brad. "Handloading Federal's Syntech Coated Bullets." LoadData, Wolfe Publishing Co., 6 Mar. 2018, https://loaddata.com/Article/BenchTopics/Handloading-Federals-Syntech-Coated-Bullets/514

Acknowledgements

